Section 4
Spatial Estimation




ﬁn

Point estimation is used to determine what
of the concentration is at some point on the grot
or in a space based on linear combinations of the
surrounding data.

BEStimation

riging is a form of estimation, and kriging is also at
pasis of the simulation techniques used in
Istics.
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We have a means of modeling spatial correlation and we want to apply it to estimate
values at unsampled locations. What we mean by point estimation is that at some point
on the ground or in a space, we would like to determine the value of contaminate
concentration.

The three techniques above are all data-driven, using some pre-existing data to
interpolate to the surrounding locations.

Estimation is related to kriging, which lies at the basis of the simulation techniques used
in geostatistics.

We will look at the three techniques above, as well as kriging. Other estimation
techniques include trend surfaces and splines.



e RNIECHRIGUES

Example data-driven techniqu
to exist already) that interpolate to tl
locations:

bor polygors
- (Ekel Tneigse or Vornol polygons)
rriear using surrouncirig caizal



EStimanen Example
Samplerbata

- Want to estime
porosity at unknc
point, X,.

This map shows the locations of 6 samples of known porosity and one point
where porosity is unknown. We will estimate the porosity at the unknown point
using each of the three point estimation techniques.



N Earest INEIg o)

ﬁ n - - Polygons

» Construct polygons around the
the space into reglonS

» Everywhere inside of the polygon is closer to
sample point enclosed by that polygon than to any
other sample point

- Advantages:

*Simple, fast, exact interpolator (at a point where the
value is known, it returns that exact value)

Disadvaha\ es;
ities at polygon boundaries

- and somewhat unevenly spaced,
by the sparsely located points
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e 1dea 1sto Construct polygons that divide Space into regions constructed
such that every location within a polygon is closer to the sample location
within that polygon than to any other sample location.

The advantage of asimple, fast, exact interpolator isthat at a point where we
know the sample value, this technique will return that exact value.

The disadvantage isthat if there in not alot of data and the data is somewhat
unevenly spaced, the pointsthat are further away from the others will
dominate the estimation.



INEarest-INelgnbor

ﬁn [2eINgeRS

- Connect each sample
point to the neighboring
sample points to create a
series of triangles

>

2000

1000

% 100 200, 300 400 500

rretied value et Unkrnowrn = 2671
46

Around the point with value .261 there is a polygon forming, and every point
within that polygon is closer to .261 than to any other sample point.

Every point within a polygon is assigned the value of the sample point in that
polygon.

Estimated value at Unknown = .261



E [EecalNVIiEan
l n RREstimation

« Use the mean of surrounding data as an ¢
of the value at target location

Advantages:
» Simple, fast, few large errors (near the edges of the
Diszdvarniages:
» Not an exact interpolator (the average of the few surrounding
data points won’t necessarily return the exact value for a
~ known point)
t what are the "surrounding data"?

‘asmoothing effect on the data values. Any extreme
igh or low, will get smoothed out as they are
with the surrounding values

EOI eI 2 Sriown: mezr = Un*SUM(data) = 0.218
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Should each surrounding
point be weighted evenly?

+0.21% 203

Do some closer points
influence the value at the
unknown point more than
some more distant points?

0.261

+Unknown
+0.174
0.241

Should the more distant

points be included in the [
average? If so, should they 100[
be given less weight? i

0 0 100 200 X 300 400 500

For the example shown: mean = 1/n* SUM(data) = 0.216



E I nVerse Distance
l n [Estimation

» Create weights for the data values
that are inversely proportional to the
distance from the unknown location,
so the further away from the sample
point, the smaller the weight

e weighting function is the inverse WSS

ce raised to a power, W di_is the distance
z;is the sample value

Adyeizg
and includes distance in calculation of weights
DisadVantaese

astimator “ blows up”.
ymen 4-8

The Inverse Distance technique is similar to Local Mean, but the
“surrounding” data are no longer equally weighted.

Each weight is normalized by sum of all weights and multiplied by its
corresponding sample value

The most common value of wis 2, thisis called an inverse distance squared
estimation (an option in many GIS programs).

In the equation, the denominator is the sum of all weights, the numerator isthe
weight times the respective value.



Inverse Distance

EStimation

Inverse Distance Squared (W
Estimation of Value at (235.0, 1

Distance from Normalized Weighted

Sample # Z Value NORIC) Weight Value

0.261 80.62 0.403 0.105
0.174 123.69 0.172 0.03
0.203 224.72 0.052 0.01
0.215 212.13 0.058 0.013
0.241 94.34 0.295 0.071

0.2 358.05 0.02 0.004

e is the sum of weighted values.

Esiirraie of value ai Unknown = 0.233
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EValuating

ﬁ n ESWIEWeRNEChnIgUES

What attributes/statistics could be used to deter
whether or not a technique is worthwhile?

* Estimate a large number of points (100’s-1000’s) and then
take a sample at each location. Look at how well the
estimates and actual values compare.

(Practically possible with a subset of a large data set)

~ Look at the mean error as a measure of bias across all of
hose locations. Want as many over-estimates as under-
stimates so that the mean =0 in terms of error.

e spread, or variance, of the errors. Want it to be
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e metrics we could use to do an evaluation:

Confirmation Sampling / Jacknifing: We could estimate the values at the
locations where we actually know the values and check to see how well a
chosen technique performs (one at atime, pull each data point out of data set
and estimate that data value using the surrounding data. Compare actual
(“removed”) value to the estimate made with surrounding data), OR imagine
estimating a large number of points (100’ s-1000's) and then, after the
estimation, taking a sample at each location. Look at how well the estimates
and actual values compare. Thisisa“ practical” possibility if you “hold out” a
subset of alarge data set when performing the estimation.

Mean Error: Look at mean error as a measure of bias across all of those
locations. Y ou want the biasto show consistent over- or under-estimation
across all locations, so that the mean error = 0.

Spread/variance of Errors: Look at how widely spread the errorsare. You
want the variance to be minimal.

10



=VEIENERESHImaton Technigues
l n | slor) eiplel Acei]fzley

Precise

Accurate

ites rresr error =0

Irnprecise: wide distrigution)
Etdetleziteiotels to) thie low side | Inzccuraie: high side bias
Irnprecise: wide distripution

Precise: narroiange

curve is histogram of all sample values
411

The Inaccurate/Precise model (lower left) is probably the worst case of all
because though there is a precise, narrow range that lets you think you have
small error, thereisastrong biasto the low side. It suggests that the actual
value is outside of the model.
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uatlng EStimation llechnigues

Seatter Plots

* Build a model of the concentration at :. C

« Take a sample and see how well the estimate
correlate.

Ogptirnal The distribution is
the 45 degree line (accurate, unbiased)
with a small spread.

~ Large Variance The distribution is
“accurate and unbiased, but the
are more variable causing a
spread in the distribution

4-12
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Seatter Plots

low bias

rligh bias overestimates the true

Low pias underestimates the true valu

HEteros edasiic  rFleteroscedastic The variance changes
\ as a function of the value. So as the
values increase, quality of the fit about

1e 45 degree line deteriorates.

concditionzl) pizls

riclitionzal A small subsection
)ears to be optimal, but the low
to be overestimated and
0 be underestimated.

estimate
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luatlng ESHimatien Jechnigues

Jacknifing

Jacknifing
« One at atime, pull each data pomt
and estimate that data value using the
~surrounding data N
Ompare actual (“removed”) value and eSt|m _
W|th surrounding data on a scatter plot

low bias heteroscedastic conditional bias

estimate
estimate
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ﬁ n . Kriging

Kriging is an estimator that uses a weighted IInear
surrounding data to produce unbiased, minimum varianc
estimates.

Kriging weights are not based on Euclidean distance, but use th
geometry defined by the variograms.

Ordinary ¥riging (O1): Allows for local re- >
estimation of the global mean. The est = é_ ? 7z
estimate is the sum of the product of the ™
veights and the z values.

Slimgle iriging (S¥): Enforces the
an on to each estimate. Sums
residual of the estimate
nean and adds that

est = mean+§ ?,[z - mean]
i=1

4-15

Kriging is the basis of everything we do in geostatistical simulation.

Ordinary Kriging (OK) is similar to inverse distance squared. We have an
estimate that is the sum of the product of the weights and the z values. The
difference in this estimation is that the weights are not based on Euclidean
distance but on the geometry defined by the variograms, generating a single
best estimate at alocation.

Simple Kriging (SK) usesresiduals off the global mean to estimate residual of
the global mean. Subtract the global mean from the estimate and multiply that
by the weight, then add the sum of that to the global mean. This processis
more precise if conditions present second order stationarity.

Theoretically, people like SK, but in practice OK isthe way to go.

15



igingiasia BILUE

Best Linear Unbiased Estimz

Does Ordinary Kriging (OK) fit the o
SRaB.l .U.E.?

st:  Tries to minimize the variance
residuals and make the distribution
precise

Lineé‘r‘:i aweighted linear combination of
the surrounding data

Uglbfzisecl; Attempts to make the mean residual
) ZEero

(D

4-16
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C,, is the covariance at zero separation, the sill value
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- Add an extra row and column

: _ Lagrange parameter,
Assure unbiasedness

from adding a row
for unbiasedness
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The matrix of the covariances of all the sample points in the search neighborhood
operates to take into account data redundancy.

Two points that are close to each other in one direction and have a high covariance
are redundant, may want to weight them together as much as a single point in the
opposite direction the same distance away.

After inverting C, which rescales the covariances, alarge covariance becomes a small
weight.

So the matrices take care of the clustering of the data points and the distance between
unknown point and sample points in variogram space, not just Euclidean space. Put
those two together to get the kriging weights.

18



ﬁ n o) eriehce Matrix

* There is no guarantee of a unique solution to the mat
To ensure that there is only one unique solution, the s
must be positive definite

 For estimates that are weighted linear combinations of other
values, the variance about those estimates must be greater than
or equal to zero

' definite condition can be achieved by modeling
iograms with positive definite functions, as long as one of
ndard models is used (which are positive definite
1s) the covariances will create a positive definite set of

4-19

SEAN: In my notes here it says to add a subsection on
what we need to get started, data from site expected to be
output using GI S software to put in correct format,
mapping of data pointsright away...lsthisanew dlide or
ISit anew section??

19



Posliivea Bleflplia

Guarantee that the variance of any
variable formed by a weighted linear

(Isaacs and Srivastava, 1989)

20



UnRiasedness

We want the mean, or expectation, of th

» Define error as: the estimated value — actua

n
]
E(xo) =a ?:Z(x;) - Z(X,)
i=1
e that the mean is stationary, so both the estimate
al value have the same mean.

or is set to zero, then:

4-21

Sean - please note the intervening steps here...

21



ﬁ n Eulahoe Parameter

» Lagrange parameter, m solves the |
n+1 equations and only n unknowns
by the unbiasedness constraint

Lagrange parameter is essentially another
N known
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In the Covariance matrix, we had six equations and six unknowns, then added the extra
row and column for the unbiasedness constraint, which created seven equations and six
unknowns. Inorder to fix that, use the Lagrange parameter.

22



%ﬁ ng EABIRe Summary,

Covariances in D act like inverse distance we
close together have a high covariance, as the di
the covariance approaches zero).

eHowever, the weight as a function of distance is no
simple powers, it can fit with more complex variogram

ances are not in Euclidian space, but are relative to variogra

ide anisotropy and weights of zero, if a point is really
‘ange of the variogram it’s going to get a zero

ecluster the data
D for data redundancy

4-23

The kriged weights leave more flexibility, can fit with more complex variogram models.
Declustering of datais afunction that other techniques do not provide.



ﬁ n N i0inG Results

For the example problem, the normal-scor:
model is spherical, with a range of 125.0 (N-S
100.0 (E-W) and a nugget of 0.0

Distance from Kriging Weight

Location (radii = range)
0.541 Note that only
points 1 and 5
fall within the

search ellipse

4-24

AT within the search ellipse.

The weights get multiplied by the value of the two points and the kriging
estimate is the sum of those.

Kriging also provides an estimate of the error at alocation; no other estimation
technique does this.

Estimator results:
Nearest Neighbor Polygon : 0.261
Local Mean: 0.216
Inverse Distance: 0.233
Kriging: 0.250

24



Eer Variance

« Kriging is unique among spatial
attempting to minimize errors, making the

ch error, e, = the estimate - the true value
- and €is the mean error

4-25

In this equation, we are looking at the difference between the error at any individual
location and the mean error, squared.

Sean - my notes say you will make this smoother and add detail.

25



ﬁ n Error \Variance

rt Version: The estimate of error variance is
variance minus the weighted sum of
covariances in Dplus the Lagrange
parameter

rl

O
O

Lorig Version: Derive a model of the error variance and
minimize the modeled variance by setting
partial derivative for each weighted
covariance between datum and estimation
location to zero.

(? ic;io) ML ;grrr?]?trix e (? XD)

he estimate
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—

S 2Data - (? XD) expresses the fact that error variance in kriging is not
afunction of data values but rather of sample configuration - the proximity of other
values.

For example: think of a simple system with a single data point in the search
neighborhood, and we have a normalized covariance such that at zero separation
distance the covariance is equal to 1. The variance of the datawill be zero (one
data point), the sum of the weighted covariancesis 1, and mis going to be zero.
What we end up with in that systemisthat the estimate of the variances will be
equal to zero.

26



ﬁ n Error Valiance

* Error variance is also called kriging
estimation variance

« Error variance is not a function of data values but c
of sample configuration

| *Error Variance is equal to zero at data location

the kriging system, distribution of errors is
parametric

o h a gaussian distribution is often assumed for errors)

4-27

140

AQ _ 2

Recall: Sg =Spia- Ha (?iCio)"'H
i=1

To minimize error variance, look only at the variance of the data and at the
kriging weights.

It really comes down to the weights, which are afunction of distance specified
asthe variograms and the variance of the data.

To locate additional samplesin the area of greatest kriging variance, put the
samples as far away as possible from any available data.

27



ﬁn

Kriged map of elevation
of aquifer bottom
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Kriging variance is not afunction of data values, only of the proximity of other
data points. It can be used as a means for locating additional samples - place
the samplesin the area of greatest kriging variance, as far as possible from any
available data.

In this example, alot of the sampling is focused on one area at the source of a
leak, therefore there is low variance (blue zones). Additional samplesin the
area of high variance wouldn’t give any information because they are outside
of the area of regulatory concern. Need a criterium that istied to the problem,
not just to the spatial extent of the data.

28



g Vaiance

ﬁ n [Exanmple

100 pp >
O
10ft SampleRis
Sample L5 o‘/120 ppm
iS94 ppm

(e}

ample R and Sample L are very close to each other, there
small error variance, but if the regulatory threshold is 100
ils and L passes.
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Example: Two samples, 10 feet away from each other in avery large domain. Sample R
value is 120 ppm, Sample L is 94 ppm. There are some other samplesin the area. Since
R and L are very close to each other, there will be asmall error variance, but if the
regulatory threshold is 100 ppm, then R fails and L passes. There is significant
uncertianty as to where that 100 ppm line actually falls. So even though the kriging
variance tellsusthat it’savery small error, if we'reinterested in sampling based on an
action level that falls between these samples, the uncertainty directs us to target our
sampling in this location.

Kriging variance is not afunction of the data values at all, only of the proximity of other
data points.

At any location, to determine if we want to take another sample:

* Get the best estimate from kriging

* Get the variability at the same location from the kriging variance map, we
assume the shape is Gaussian.

29



ﬁn eicaior Kriging

*Indicator kriging is basically kriging on a
transform of the of the data.

*Transforming data to zeros and ones using a thre

less than or equal to the threshold are given a va
‘and values above that are given 0’s.

Sample R (120 ppm)
indicator=0

O
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Indicator Kriging
* Transform datato zeros and ones using a threshold.

* Krige data using indicator variogram (Kriging the indicators requires the
variogram to be modeled in the indicator space)

* Resulting map shows p(exceed) threshold (all valuesin [0,1])

30



NV ENeINIcIcator Kriged
PEBIIWACIREXCEEdENce

Sean - Make Map
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ﬁn or Vodel

Gozl: try to test technique under conditions as
as possible to true estimation conditions

' erically (without doing samples), there are two
sible techniques:

s Cross-Validatior

4-32

“ True estimation conditions’ refersto the regulator that will come in and sample a spot
that issaid to be clean to seeif it is.

Cross-validation and Jackknifing are two numerical techniques that we can perform to
test if our model demonstrates the contaminant distribution at all points without going
out into the field for more samples.

Residuals can show if you are imbalanced between high and low errors.
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l‘cal Assessment

ﬁ n | - of Model

s-validation: Pull each datum out of the
and use the surrounding data to re-estir
the removed datum. Then compare
estimate to the actual value.

Cro

p)

L Jeweidenifing: Hold back some of original data and use the

remaining data to estimate those locations.
Then compare the real values with the
estimates.

Bothrechinl ;: Examine a scatterplot of the actual values vs.
~ estimates. Map the residuals to make sure
they are not always over estimated in one
. ion and underestimated in another.
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Cross-validation: If we have alot of data points, we can go around one at atime and
pull out and re-estimate each point and see how close the estimate is. Afterwards we can
make a scatterplot and plot actual vs. estimate to see how close we are, we can also map
those residuals to make sure we are not always over estimating in one region and
underestimating in another.

Jackknifing: If we had 1000 samples, we could estimate the concentration across the site
using only 800 of the samples, then we could add in those 200 additional locations where
we held the data back and compare the real values with the estimates.
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